因此,中国1968年将钷划入64种有色金属之外。1787年瑞典人阿累尼斯(C.A.Arrhenius)在斯德哥尔摩(Stockholm)附近的伊特比(Ytterby)小镇上寻得了一块不寻常的黑色矿石,1794年芬兰化学家加多林(J.Gadolin)研究了这种矿石,从其中分离出一种新物质,三年后(1797年),瑞典人爱克伯格(A.G.Ekeberg)证实了这一发现,并以发现地名给新的物质命名为Ytteia(钇土)。后来为了纪念加多林,称这种矿石为Gadolinite(加多林矿,即硅铍钇矿)。 1803年德国化学家克拉普罗兹(M.H.Klaproth)和瑞典化学家柏齐力阿斯(J.J.Berzelius)及希生格尔(W.Hisinger)同时分别从另一矿石(铈硅矿)中发现了另一种新的物质---铈土(Ceria)。
多年来成为市场关注的热点。金属钕的最大用户是钕铁硼永磁材料。钕铁硼永磁体的问世,为稀土高科技领域注入了新的生机与活力。钕铁硼磁体磁能积高,被称作当代“永磁之王”,以其优异的性能广泛用于电子、机械等行业。阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界一流水平。钕还应用于有色金属材料。在镁或铝合金中添加1.5-2.5%钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或消毒创伤口。钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。
阿尔法磁谱仪对反物质探测的灵敏度比现在其他实验高出4—5个数量级以上,能够精确测量太空中反质子、正电子和光子的能量分布,寻找宇宙空间中的反碳核和反氢核,并可能为寻找暗物质提供线索或答案。
“阿尔法磁谱仪”随“发现号”航天飞机邀游太空,然后一同返回地面,还于2002年随航天飞机正式进驻阿尔法空间站3至5年,届时将对揭示宇宙的奥秘发挥巨大的推动作用,而其长远的科学价值更是不可限量。
因此,找到一种探测反物质和暗物质的方法就显得特别重要!于是,“阿尔法磁谱仪”应运而生。“阿尔法磁谱仪”实验由华裔美国科学家、诺贝尔奖获得者丁肇中教授所领导,美国、中国、德国等10多个国家和地区的许多科学家参加了研究与设计工作。其核心部件是一块外径1.6米、内径1.2米、重2吨的钕铁硼环状永磁体,若使用常规磁铁,因四处弥漫的磁场的影响而无法在太空中运行,而使用超导磁体又必须在超低温下运行,也不现实,什么材料最合适呢?我国科学家倡议制作了完全符合太空运行要求的钕铁硼永磁体,装进了“阿尔法磁谱仪”,为其捕捉反物质和暗物质信息提供强大的磁力。