铝镍钴合金(Alnico)是一种铁合金,除了铁以外,还添加了铝(Al)、镍(Ni)、钴(Co)以及少量其他增强磁性能的成分。铝镍钴合金具有高矫顽性(coercivity),是很适合为永久磁铁的材料。铝镍钴合金坚硬易脆,无法冷加工(cold work),必需用铸造或者烧结(Sintering)处理制成。
举一个中间性质的各向异性铸造铝镍钴合金例子,Alnico-6的成分为8% Al、16% Ni、24% Co、3% Cu、1% Ti,其它都是Fe。Alnico-6的最大磁能积(BHmax)为3.9百万高斯-奥斯特(megagauss-oersted,MGOe),矫顽性为780 oersted ,居里温度为860 °C,最高工作温度为525 °C。
于1931年,日本材料专家Mishima发现了一种特定成分的铝镍钴合金(58% Fe,30%Ni,12%Al),其矫顽性极高,是那时期最好的磁性钢的两倍。
而近几年来,钕铁硼磁钢作为节能环保的朝阳产业,已广泛用于信息技术、汽车、核磁共振、风力发电和电机等领域,预计未来3-5年的复合增长率在20%左右。由于中国具有明显的资源、成本和市场优势,世界钕铁硼产业正在向中国转移,2005年中国钕铁硼产量己经占到全球产量的70%以上。
钕铁硼磁钢分烧结钕铁硼与粘接钕铁硼两种。
美国物理学家王安1950年提出了利用磁性材料制造存储器的思想。福雷斯特则将这一思想变成了现实。 为了实现磁芯存储,福雷斯特需要一种物质,这种物质应该有一个非常明确的磁化阈值。他找到在新泽西生产电视机用铁氧体变换器的一家公司的德国老陶瓷专家,利用熔化铁矿和氧化物获取了特定的磁性质。
对磁化有明确阈值是设计的关键。这种电线的网格和芯子织在电线网上,被人称为芯子存储,它的有关专利对发展计算机非常关键。这个方案可靠并且稳定。磁化相对来说是永久的,所以在系统的电源关闭后,存储的数据仍然保留着。既然磁场能以电子的速度来阅读,这使交互式计算有了可能。更进一步,因为是电线网格,存储阵列的任何部分都能访问,也就是说,不同的数据可以存储在电线网的不同位置,并且阅读所在位置的一束比特就能立即存取。这称为随机存取存储器(RAM),它是交互式计算的革新概念。福雷斯特把这些专利转让给麻省理工学院,学院每年靠这些专利收到1500万~2000万美元。
当遇到高频干扰信号时,电容的容抗较小,将磁环的电感短路,从而使共模扼流圈失去作用。 根据干扰信号的频率特点可以选用镍锌铁氧体或锰锌铁氧体,前者的高频特性优于后者。锰锌铁氧体的磁导率在几千---上万,而镍锌铁氧体为几百---上千。铁氧体的磁导率越高,其低频时的阻抗越大,高频时的阻抗越小。所以,在抑制高频干扰时,宜选用镍锌铁氧体;反之则用锰锌铁氧体。或在同一束电缆上同时套上锰锌和镍锌铁氧体,这样可以抑制的干扰频段较宽。 磁环的内外径差值越大,纵向高度越大,其阻抗也就越大,但磁环内径一定要紧包电缆,避免漏磁。 磁环的安装位置应该尽量靠近干扰源,即应紧靠电缆的进出口。