大连三戟电机电器有限公司

大连经济技术开变频柜维修电话,实力厂家,技术服务

价格:面议 2024-04-16 07:00:01 545次浏览

过电流的原因

1、工作中过电流即拖动系统在工作过程中出现过电流.其原因大致来自以下几方面:

① 电动机遇到冲击负载,或传动机构出现“卡住”现象,引起电动机电流的突然增加.

② 变频器的输出侧短路,如输出端到电动机之间的连接线发生相互短路,或电动机内部发生短路等.

③ 变频器自身工作的不正常,如逆变桥中同一桥臂的两个逆变器件在不断交替的工作过程中出现异常。例如由于环境温度过高,或逆变器件本身老化等原因,使逆变器件的参数发生变化,导致在交替过程中,一个器件已经导通、而另一个器件却还未来得及关断,引起同一个桥臂的上、下两个器件的“直通”,使直流电压的正、负极间处于短路状态。

2、升速时过电流 当负载的惯性较大,而升速时间又设定得太短时,意味着在升速过程中,变频器的工作效率上升太快,电动机的同步转速迅速上升,而电动机转子的转速因负载惯性较大而跟不上去,结果是升速电流太大。

3、降速中的过电流 当负载的惯性较大,而降速时间设定得太短时,也会引起过电流。因为,降速时间太短,同步转速迅速下降,而电动机转子因负载的惯性大,仍维持较高的转速,这时同样可以是转子绕组切割磁力线的速度太大而产生过电流。

功率场效应晶体管(POWER MOSFET) 它的3个极分别是源极S、漏极D和栅极G

其工作特点是,G、S间的控制信号是电压信号Ugs。改变Ugs的大小,主电路的漏极电流Id也跟着改变。由于G、S间的输入阻抗很大,故控制电流几乎为0,所需驱动功率很小。和GTR相比,其驱动系统比较简单,工作频率也比较高。此外,MOSFET还具有热稳定性好、工作区大 等优点。

但是,功率场效应晶体管在提高击穿电压和增大电流方面进展较慢,故在变频器中的应用尚不能居主导地位。

开关电源

开关电源电路提供变频器的整机控制用电,是变频器正常工作的先决条件。变频器应用的开关电源电路,为直一交一直型的逆变电路,是一种电压和功率的变换器,将直流电压和功率转换为脉冲电压,再整流成为另一种直流电压。输人、输出电压由开关变压器相隔离,开关变压器起到功率传递、电压/电流变换的作用。开关变压器为降压变压器。开关电源的特点如下:

1)开关电源的振荡和调压方式是利用改变脉冲宽度或周期来调整输出电压的,称为时间比例控制,又分为PWM(调宽)和PFM(调频)两种控制方式。

2)从电路的能量转换特性看,可分为正激和反激两种工作方式。开关管饱和导通时, 二次绕组连接的整流器受反偏压而截止,开关变压器的一次绕组流入电流而储能〈电磁转换)。开关管截止时,二次绕组经负载电路释放电能(磁电转换)。正激方式则与此相反, 实际应用不多。

3)从开关变压器的一次电路结构来看,有分立元件构成的和集成振荡芯片构成的两种电路形式。因而从振荡信号的来源看,又分为自激(分立零件)和他激式(IC电路)开关电源。两种电路结构都有应用。 4)开关管有采用双极型器件和采用场效应晶体管的。

5)小功率变频器采用单端正激式电路,大、中功率变频器常采用双端正激式电路。一般变频器的开关电源,常提供以下几种电压输出:CPU及附属电路、控制电路、操作显示面板的+5V供电;电流、电压、温度等故障检测电路、控制电路的±15V供电;控制端子、工作继电器线圈的24V供电。四路相互隔离的约为22V的驱动电路的供电,该四路供电往往又经稳压电路处理成+15V、 -7.5V的正、负电源供驱动电路,为IGBT逆变输出电路提供激励电流。

任何电子设备,电源电路的故障率总是相当高的一因其要提供整机的电源供应,负担重。变频器的开关电源电路,形式上比较单一,结构上也比较简单。但是简单电路也可能会产生疑难故障。开关电源的检修不像线性电源那么直观,电路的任一个小环节一振荡、稳压、保护、负载等出现异常,都会使电路出现各种各样的故障现象。

上电后无反应,操作显示面板无显示,变频器好像没通电一样。测量控制端子的控制电压和10V频率调整电压都为0,测量变频器主接线端子电阻正常,那么大致上可以断定问题是出在开关电源电路了。

不论是PAM,还是PWM,其输出电压和电流的波形都是非正玄波,具有许多高次谐波成分。为了使输出电流的波形接近与正玄波,又提出了正玄波脉宽调制的方式。下次接着讲SPWM 各位朋友大家好,今天我要为大家讲的是:正弦波脉宽调制(SPWM)

1、QPWM的概念 在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。当正弦值为值时,脉冲的宽度也,而脉冲间的间隔则小,反之,当正弦值较小时,脉冲的宽度也小,而脉冲间的间隔则较大,这样的电压脉冲系列可以使负载电流中的高次谐波成分大为减小,称为正弦波脉宽调制。

SPWM脉冲系列中,各脉冲的宽度以及相互间的间隔宽度是由正弦波(基准波或调制波)和等腰三角波(载波)的交点来决定的。具体方法如后所述。

2、单极性SPWM法 (1)调制波和载波:曲线①是正弦调制波,其周期决定于需要的调频比kf,振幅值决定于ku,曲线②是采用等腰三角波的载波,其周期决定于载波频率,振幅不变,等于ku=1时正弦调制波的振幅值,每半周期内所有三角波的极性均相同(即单极性)。 调制波和载波的交点,决定了SPWM脉冲系列的宽度和脉冲音的间隔宽度,每半周期内的脉冲系列也是单极性的。 (2)单极性调制的工作特点:每半个周期内,逆变桥同一桥臂的两个逆变器件中,只有一个器件按脉冲系列的规律时通时通时断地工作,另一个完全截止;而在另半个周期内,两个器件的工况正好相反,流经负载ZL的便是正、负交替的交变电流。

3、双极性SPWM法

(1)调制波和载波:调制波仍为正弦波,其周期决定于kf,振幅决定于ku,中曲线①,载波为双极性的等腰三角波,其周期决定于载波频率,振幅不变,与ku=1时正弦波的振幅值相等。

调制波与载波的交点决定了逆变桥输出相电压的脉冲系列,此脉冲系列也是双极性的,但是,由相电压合成为线电压(uab=ua-ub;ubc=ub-uc;uca=uc-ua)时,所得到的线电压脉冲系列却是单极性的。

(2)双极性调制的工作特点:逆变桥在工作时,同一桥臂的两个逆变器件总是按相电压脉冲系列的规律交替地导通和关断,毫不停息,而流过负载ZL的是按线电压规律变化的交变电流。

4、实施SPWM的基本要求

(1)必须实时地计算调制波(正弦波)和载波(三角波)的所有交点的时间坐标,根据计算结果,有序地向逆变桥中各逆变器件发出“通”和“断”的动作指令。

(2)调节频率时,一方面,调制波与载波的周期要同时改变(改变的规律本文不作介绍);另一方面,调制波的振幅要随频率而变,而载波的振幅则不变,所以,每次调节后,所胶点的时间坐标都 必须重新计算。 要满足上述要求,只有在计算机技术取得长足进步的20世纪80年代才有可能,同时,又由于大规模集成电路的飞速发展,迄今,已经有能够产生满足要求的SPWM波形的专用集成电路了。 西门子420变频器PID调试:总结在变频器page5-13.14详细讲解在说明书page10-84.85..86.87.88.89.90.91.92.93.94

店铺已到期,升级请联系 15923987592
联系我们一键拨号13940948828