2、编码方式更加先进
市面上主流的DVR采用的压缩技术有MPEG-4、H.264、M-JPEG。MPEG-4、H.264是国内常见的压缩方式,而H.264因其更切合网络传输的要求已成为主流。今后为了使嵌入式DVR具有更广泛的适用性,各种算法的统一将是未来发展的趋势,但这种统一不是以国内哪个企业的标准为标准,而需要广泛的政府职能部门与DVR产业链上的各类企业的广泛参与。例如,我国具备自主知识产权的AVS压缩算法,还有H.265压缩算法,相对于H.264在很多方面有了革命性的变化。
一般而言,现有的无线远程监控系统,大都符合“控制中心—监测站”的构建模式。控制中心是整个系统运作的核心,负责收集各监测站上传的监测信息,发送各种操作命令以控制监测站的行业。监测站被布放于远离控制中心的各监测点处,负责完成信息的采集和响应控制中心发出的控制命令。控制中心可用普通微机、工作站或工控机实现,软件开发可靠基于现有的Windows或Unix操作系统。监测站的设计实现可根据不同的应用目的和应用环境,采用特定的技术形式,比如单片机、DSP或者Intel X86系列的微处理器等。无线远程监控系统的组网方式也很灵活,可利用现有的无线通信网,如GSM/GPRS网络,CDMA移动网络等,也可单独搭建专门的无线局域网。下面系统地讨论无线远程监控系统设计开发时涉及到的一些核心技术,主要包括三个方面:监测站的设计开发、无线网络的组建和控制中心的软件设计。
对于监控摄像机来说,所处位置的好坏直接关系着设备的成像效果。因此,不少用户将监控的效果视为监控摄像机安装位置的首要参考。不过,他们却忽视了十分重要的一点:监控摄像机并非,在安装位置的选择上,它同样有着自己的要求,首先就是在安装的位置上,为了能够使摄像机避免周围环境的干扰,实现一个更佳的拍照和生存效果。在室内环境安装时,我们要尽可能的保证设备的高度不低于2.5米,而在室外环境中,我们也要将监控设备置身于距离地面3米半以上的高度。否则,无论是从摄像机自我保护,还是设备监控角度来说,都会产生不少负面的效应。只有考虑到了这些基本的问题之后,角度才是我们考虑的方面。
如今,已经有不少的摄像机都开始采用宽动态的功能,提升自己在逆光环境下的成像能力,但是,这并非就意味着摄像机可以在强光的环境下持续的完成工作。因为在强光的照耀下,直射的强光容易造成摄像机难以正常的定位准确的图像,终造成感测器晶片上的彩色滤光器性脱色,使摄像机在监控影像中出现条纹。
因此,如果可以的话,我们尽可能的使摄像机处于一种"顺光"的模式,但是无论如何,我们都要避免强光长时间对摄像机镜头的直接刺激。
要想夜晚监控也到位,就得用夜视效果好的IPC。夜视距离主要由红外灯数量决定。单灯的夜视距离为30米,双灯的夜视距离为50米。