气体保护电弧焊加工核心工艺特点
保护效果好:氩气、二氧化碳(CO₂)等保护气体隔绝氧气、氮气,避免焊缝产生气孔、氧化等缺陷。
焊缝质量优:成形美观、飞溅少,接头强度高,无需额外清渣工序。
适用场景广:可焊接碳钢、不锈钢、铝合金等多种金属,适配薄板至中厚板焊接。
分类明确:主流分为熔化极气体保护焊(MIG/MAG)和非熔化极气体保护焊(TIG),前者效率高,后者精度高。
埋弧焊加工关键工艺流程
焊前准备:清理母材焊接区域的油污、铁锈、氧化皮,保证表面洁净;根据母材材质(碳钢、低合金钢等)选择匹配的焊丝和焊剂(如 H08MnA 焊丝 + HJ431 焊剂);调整焊接参数,包括电流(300-1000A)、电压(25-40V)、焊接速度(30-100cm/min)。
焊剂铺设:在焊接接头区域均匀铺设颗粒状焊剂,厚度通常为 20-40mm,确保完全覆盖电弧路径。
引弧焊接:通过焊丝与母材短路引燃电弧,电弧热熔化焊丝、母材及部分焊剂,形成熔池;焊剂熔化后形成熔渣,进一步保护熔池并改善焊缝成形。
收弧收尾:焊接至末端时,逐渐降低焊接电流和电压,或采用收弧板过渡,避免焊缝收尾出现缩孔、裂纹;焊接结束后保留焊剂覆盖,待焊缝冷却后清理。
焊后处理:清除焊缝表面的熔渣和残留焊剂,对重要工件进行焊缝检测(超声波检测、射线检测),必要时进行焊后热处理消除应力。
不锈钢焊接加工的核心是通过合适的焊接方法与工艺控制,避免腐蚀失效和力学性能下降。
核心焊接方法
氩弧焊(TIG):适合薄板、精密件焊接,焊缝成形美观,耐腐蚀性好。
熔化极气体保护焊(MIG/MAG):效率高,适用于中厚板批量生产,需控制保护气体纯度。
焊条电弧焊(SMAW):设备简单、操作灵活,适合现场抢修或复杂结构焊接。
关键工艺要点
材质匹配:选用与母材同系列的焊接材料,避免异种金属焊接导致的腐蚀风险。
焊接环境:保持环境干燥、无粉尘,防止湿气影响焊缝质量。
焊后处理:重要构件需进行酸洗钝化,去除氧化皮,恢复不锈钢的耐腐蚀性能。
常见问题及解决
热裂纹:控制焊接电流和速度,减少热输入,必要时预热母材。
气孔:确保焊接材料干燥、保护气体通畅,清理坡口表面油污和杂质。
晶间腐蚀:采用小线能量焊接,避免焊缝及热影响区处于敏化温度区间。
低合金钢焊接加工的核心是平衡强度与韧性,避免冷裂纹、热影响区脆化等问题,需根据钢种强度级别和服役环境选择工艺。
核心技术特点
低合金钢(含碳量≤0.25%,合金元素总量≤5%)通过 Mn、Si、Cr、Ni 等元素强化,焊接性随强度级别升高而下降(如 Q355 焊接性优于 Q690)。
主要风险:淬硬倾向导致冷裂纹(氢致裂纹)、热影响区(HAZ)韧性下降、层状撕裂(厚板焊接)。
常用焊接方法及适用场景
焊条电弧焊(SMAW)灵活便携,适合现场安装、短焊缝或复杂结构(如桥梁、压力容器),根据强度等级选匹配焊条(如 Q355 用 E5015-G,Q690 用 E11015-G)。
埋弧焊(SAW)效率高、熔深大,适合中厚板(≥8mm)长直焊缝或环缝(如管道、储罐),采用低氢型焊剂(如 HJ431 配合 H08MnA 焊丝)。
气体保护焊(GMAW/FCAW)
MIG/MAG 焊:适合中薄板高速焊接(如汽车车架),用实芯焊丝(如 ER50-6)配合 Ar+CO₂混合气体。
药芯焊丝电弧焊(FCAW):无需单独配保护气,适合户外或厚板焊接,抗风能力强。
电渣焊(ESW)适合超厚板(≥50mm)焊接(如重型机械机架),但热输入大,需严格控制焊后热处理以改善 HAZ 韧性。
关键工艺要点
冷裂纹预防:
焊前预热:根据钢种强度和板厚确定温度(Q355 板厚>25mm 预热 80-120℃;Q690 预热 150-250℃)。
控制氢含量:使用低氢型焊接材料(焊条经 350℃×1h 烘干,存入 80-100℃保温筒),焊前清理油污、铁锈(氢的主要来源)。
焊后缓冷:用石棉覆盖或后热(250-350℃×1-2h),加速氢扩散。
热影响区韧性保障:采用小热输入参数(如焊条电弧焊电流≤200A,埋弧焊速度≥30cm/min),避免过热导致晶粒粗大;高韧性钢种(如 Q690)可配合焊后回火(600-650℃)。
层状撕裂控制:厚板焊接时采用 “Z 向钢”(如 Q355D-Z15),坡口设计避免贯穿性熔合线(如采用 K 型坡口),必要时在 T 型接头腹板侧预制焊接垫板。

